西亞試劑優(yōu)勢(shì)供應(yīng)上萬種化學(xué)試劑產(chǎn)品,歡迎各位新老客戶咨詢、選購(gòu)!

¥0.00

聯(lián)系方式:400-990-3999 / 郵箱:sales@xiyashiji.com

西亞試劑 —— 品質(zhì)可靠,值得信賴

西亞試劑:Dual roles of FBXL3 in the mammalian circadian feedback loo

Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock

Guangsen Shi, Lijuan Xing, Zhiwei Liu, Zhipeng Qu, Xi Wu, Zhen Dong, Xiaohan Wang, Xiang Gao, Moli Huang, Jie Yan, Ling Yang, Yi Liu, Louis J-Ptáoekd and Ying Xu.

The mammalian circadian clock is composed of interlocking feedback loops. Cryptochrome is a central component in the core negative feedback loop, whereas Rev-Erbα, a member of the nuclear receptor family, is an essential component of the interlocking loop. To understand the roles of different clock genes, we conducted a genetic interaction screen by generating single- and double-mutant mice. We found that the deletion of Rev-erbα in F-box/leucine rich-repeat protein (Fbxl3)-deficient mice rescued its long-circadian period , and our results further revealed that FBXL3 regulates Rev-Erb/retinoic acid receptor-related orphan receptor-binding element (RRE)-mediated transcription by inactivating the Rev-Erbα:histone deacetylase 3 corepressor complex. By analyzing the Fbxl3 and Cryptochrome 1 double-mutant mice, we found that FBXL3 also regulates the amplitudes of E-box–driven gene expression. These two separate roles of FBXL3 in circadian feedback loops provide a mechanism that contributes to the period determination and robustness of the clock.