聯(lián)系方式:400-990-3999 / 郵箱:sales@xiyashiji.com
西亞試劑 —— 品質可靠,值得信賴
Synergic mechanism and fabrication target for bipedal nanomotors
Zhisong Wang*
Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Han-Dan Road 220, Shanghai 200433, China
Edited by R. Dean Astumian, University of Maine, Orono, ME, and accepted by the Editorial Board October 2, 2007 (received for review April 19, 2007)
Inspired by the discovery of dimeric motor proteins capable of undergoing transportation in living cells, significant efforts have been expended recently to the fabrication of track-walking nanomotors possessing two foot-like components that each can bind or detach from an array of anchorage groups on the track in response to local events of reagent consumption. The central problem in fabricating bipedal nanomotors is how the motor as a whole can gain the synergic capacity of directional track-walking, given the fact that each pedal component alone often is incapable of any directional drift. Implemented bipedal motors to date solve this thermodynamically intricate problem by an intuitive strategy that requires a hetero-pedal motor, multiple anchorage species for the track, and multiple reagent species for motor operation. Here we performed realistic molecular mechanics calculations on molecule-scale models to identify a detailed molecular mechanism by which motor-level directionality arises from a homo-pedal motor along a minimally heterogeneous track. Optimally, the operation may be reduced to a random supply of a single species of reagents to allow the motor's autonomous functioning. The mechanism suggests a distinct class of fabrication targets of drastically reduced system requirements. Intriguingly, a defective form of the mechanism falls into the realm of the well known Brownian motor mechanism, yet distinct features emerge from the normal working of the mechanism.
molecular devices | molecular mechanics theory | nanotechnology | Brownian motor